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We have used a Monte Carlo method to investigate energy migration and transfer between chromo- 
phores embedded in Gaussian space. In using this method we have obtained fluorescence quantum 
yields, fluorescence depolarization, and the respective decay profiles of donor fluorescence. It was 
shown that all photophysical observables are dependent upon the number of donor and acceptor 
chromophores and upon the F6rster radii ratio. The latter feature is particularly interesting, and it 
indicates the existence of correlations between donor and acceptor chromophores. It was shown 
that the excitation of the donor chromophore at the origin leads to different values of observables, 
in comparison with an excitation of a randomly selected donor chromophore. The results presented 
show the importance of the averaging procedures needed to be developed while dealing with 
specific distribution functions, as, for example, in the case of energy migration and trapping in 
aromatic polymers and copolymers. 
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INTRODUCTION 

In the past decade there has been a rapid develop- 
ment of experimental and theoretical contributions studying 
the physical and chemical properties of molecules 
embedded in media with specific distribution functions 
[1-6]. The approach to analyze properties and molecular 
processes by using more realistic distribution functions 
than uniform and random ones is a natural continuation 
of the previous studies. An abundance of molecular sys- 
tems is governed by specific spatial relations which, in 
the final effect, reflect their mechanical, electrical, etc., 
properties [1-3]. Among many others, organic and in- 
organic polymers have specific distribution functions of 
distances between monomer units [4-6]. 

Many experimental methods have been used to ob- 
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tain insight into the specific structure of molecular sys- 
tems. It is difficult to judge which particular method is 
the most universal. However, laser techniques and laser 
fluorescence spectroscopy appear to have several advan- 
tages: among others, a sensitivity and pico to steady- 
state resolution. In a typical fluorescence experiment, 
one can observe fluorescence from a molecule embedded 
in a specific geometry and/or medium without a uniform 
dependence of distances. By measuring transient pho- 
tophysical observables as donor fluorescence decay pro- 
files, it is possible to estimate by a fitting procedure the 
fractal dimension of the system under investigation [7]. 
Although a number of physical systems have a fractal 
structure, there is perhaps an even larger number of mo- 
lecular systems which do not have fractal properties and 
their dimensionality is not integer [7]. The dimensional- 
ity of the system is only one parameter which determines 
its properties. The second parameter is, as we mentioned 
above, the nature of the distribution functions of the 
molecules forming the system. Those two parameters are 
crucial for photophysical studies. 
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The problem of energy transfer and energy migra- 
tion in molecular systems has been addressed in many 
theoretical and experimental papers [8]. Although prog- 
ress in this subject is impressive, several important prob- 
lems remain. We discuss only two problems associated 
with energy migration and transfer in molecular systems. 
Those problems are dimensionality and the distribution 
functions. 

Only in the case of three-dimensional systems with 
a uniform and random distribution of molecules were 
satisfactory solutions obtained when using self-consis- 
tent diagrammatic solutions of the Pauli Master equation 
[9]. In spite of many other features, the results obtained 
have shown that photophysical observables are depen- 
dent upon the concentrations of donor and acceptor mol- 
ecules as well as upon the ratio of F6rster radii of acceptor 
and donor molecules [9]. The mathematical difficulties 
encountered for two- and one-dimensional systems did 
not give the expected F6rster radii dependence of pho- 
tophysical observables for those dimensionalities [10]. 
However, using Monte Carlo simulations we have shown 
[11] that in two-dimensional Langmuir-Blodgett films, 
the expected F6rster radii dependence of the experimen- 
tal observables exists in those systems. 

In the works mentioned, the common assumption 
of a uniform and random distribution of molecules in 
the medium was taken into consideration. Only recently 
have several authors investigated the process of energy 
transfer and migration in the systems with specific dis- 
tribution functions [12-14]. In this case the well-known 
problems of averaging for uniform and random distri- 
butions are even more complicated by the fact that the 
spatial distribution of molecules is different for each 
molecule. Only in the case of one-step energy transfer 
on fractal structures and in restricted geometries were 
satisfactory solutions obtained and experimentally veri- 
fied [15]. In a similar way a number of photophysical 
observables were calculated for chromophores attached 
to a polymer chain under the assumption of a Gaussian 
distribution of distances between each of them [13]. This 
assumption holds for an end-to-end distance of the poly- 
mer chain in 19 conditions. However, the intrachain dis- 
tribution functions have a complicated and not fully known 
form [16]. The theoretical approach in a description of 
energy migration and transfer for nonuniform spatial dis- 
tribution functions, as, for example, in polymeric sys- 
tems, remains an open and difficult question. 

In this paper we present Monte Carlo simulations 
of energy migration and energy transfer in a polymer- 
like system of which chromophores are embedded in a 
Gaussian space. We show that photophysical observa- 
bles such as fluorescence quantum yield, fluorescence 

depolarization, and respective fluorescence decay pro- 
files depend on the concentration of chromophores and 
the F6rster radii ratio. The importance of the averaging 
procedures in the case of specific distributions of chro- 
mophores is also shown. 

SPECIFICS OF THE SIMULATION 

Suppose that we have N chromophores distributed 
in a Gaussian fashion around the origin. Let pi(t) be the 
probability that the ith chromophore is excited at time t. 
Then the dynamics of the excitations among the chro- 
mophores are described by the Pauli Master equation, 

N 
dpi(t)/dt = - v - l P i ( t )  - 2 k) iDDpi(t ) 

j=l 
j§ 

M N 
DA kIi "Pi(t) + 2 DD --  kij pj(t) (1) 

j=l  j~l  
]~i 

for i = 1, ..., N. In Eq. (1) "r is the lifetime of the donor 
fluorescence, and k DD and k DA are the rate constants for 
energy migration between donor chromophores and en- 
ergy transfer from the donor to the acceptor chromo- 
phore, respectively. The macroscopic observables, such 
as the donor chromophore fluorescence decay GD(t), the 
decay profile of the originally excited donor chromo- 
phore GS(t), the donor chromophore fluorescence quan- 
tum yield rl, and the donor chromophore fluorescence 
depolarization r/ro, can be calculated for Eq. (1). The 
respective analysis of a numerical solution of the Pauli 
Master equation was recently discussed [17]. 

To perform a Monte Carlo simulation of energy 
migration and transfer, one has to specify the respective 
rate constants for those processes. Because we are pre- 
liminarily interested in resonance interactions between 
chromophores, the rate constants are in the form given 
by FSrster [18]: 

kDD = ~;-1 (RoDD/rij)6 (2) 

ki~ A = "r -1  (RoDA/rik)  6 (3) 

where rii(k) is the distance between the ith and the jth 
(kth) chromophore. RODD and RODA are the F6rster radii 
for donor-donor and donor-acceptor excitation transfer, 
respectively. One should note that the orientational fac- 
tor is omitted in Eqs. (2) and (3). One general method 
to simulate an arbitrary nonuniform probability distri- 
bution was proposed by Metropolis et aL [19]. This 
method is a special case of an acceptance-rejection method 
due to yon Neumann, which we used in a simulation of 
a Gaussian distribution of molecules [19]. The distri- 
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bution of donor and acceptor chromophores was simu- 
lated in spherical coordinates (q~, | r). The angles were 
generated using the inverse transform method to obtain 
a uniform spherical distribution of chromophores. The 
distances between the origin and the chromophore were 
simulated using the acceptance-rejection method accord- 
ing to the Gaussian distribution 

u(r) = 4,rr(3/(2'rrcr 2))& exp(-3r2/2~ 2) (4) 

where o- is the mean-square end-to-end distance. We 
have chosen the unit of length o" = (3/2) 1/2. Within that 
unit a comparison function was chosen to be 

w(r) = 1/[1 + 4(r - 1) 2 ] (5) 

We generated a uniform random number in the in- 
terval [0, A] [where A is the total area under the curve 
w(r)], which was used to obtain a corresponding value 
of r distributed according to w(r). For the value of r, we 
obtained a uniform random number p in the interval 
[0,w(r)]. If p __< u(r), then we accepted r as a random 
number distributed according to the Gaussian distribu- 
tion. Otherwise, we repeated the procedure. 

The presented simulations were performed for Rood 
= 0.2, which means that RODD was equal to 0.2 (3/2) 1/2 
o. The results of the simulations were averaged over 1000 
configurations of chromophores for each number of do- 
nor and acceptor chromophores. 

RESULTS AND DISCUSSION 

We mentioned in the Introduction that there is no 
satisfactory theoretical description of transport processes 
in nonuniform molecular systems. Before performing 
Monte Carlo simulations for donor-acceptor chromo- 
phores embedded in Gaussian space, it was appropriate 
to check our computer programs with more reliable the- 
ory and experimental data. Therefore, we have simulated 
energy migration and transfer in a three-dimensional two- 
component donor-acceptor system with a random and 
uniform distribution of chromophores [17]. The results 
obtained for quantum yields, fluorescence depolariza- 
tion, and fluorescence decay profiles were in excellent 
agreement with the theoretical models, experimental re- 
sults, and our and other simulations. The simulations 
performed revealed two important features. The first fea- 
ture shows that the isotopic rate constants (no orienta- 
tional factor) give an excellent description of an excitation 
transport phenomena. The second feature shows that all 
photophysical observables are dependent not only on the 
concentration of molecules, but also on the F6rster radii 
ratio RODA/RoDo [9]. This particular dependence is the 

indicator that not only is excitation transport influenced 
by successive donor configurations but also it is depen- 
dent on successive acceptor configurations. This F6rster 
radii ratio dependence was observed for three-dimen- 
sional systems [9,17] and recently communicated for two- 
dimensional Langmuir-Blodgett films [11]. The follow- 
ing question arises: Does the transport behavior in non- 
uniform systems, as, for example, in an aromatic polymer, 
have the same characteristics? We show that indeed this 
is the case. 

Quantum Yields 

Figure 1 depicts the dependence of the relative 
quantum yield "q/'qo as a function of the number of donor 
chromophores for three F6rster radii ratio and a constant 
number of acceptor chromophores. The respective quan- 
tum yields were simulated by assuming that every donor 
chromophore can be excited by an external light pulse. 
One can easily see two characteristics. The first is that 
the relative quantum yield of donor fluorescence strongly 
depends upon the F6rster radii ratio. This F6rster radii 
ratio dependence for donor and acceptor chromophores 
embedded in a Gaussian chain is much more profound 
than a similar dependence for a uniform distribution of 
chromophores. The second characteristic is that the rel- 
ative quantum yield is almost independent of the con- 
centration of donor chromophores which participate in 
the energy migration process. This behavior is even more 
unusual in comparison to a uniform distribution of donor 
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Fig. 1. The relative quantum yield "q/'qo of donor fluorescence as a 
function of the number of donor chromophores and a constant number 
(100) of acceptor chromophores for three ratios of F6rster radii. The 
values of the relative quantum yield were obtained under the assump- 
tion that every donor chromophore can be excited by an external light 
pulse. 
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and accepter chromophores, where a strong concentra- 
tional dependence of donor quantum yields is observed) 

It is obvious that in the case of a nonuniform dis- 
tribution, one has to deal with the problem of different 
configurations of chromophores. To illustrate this par- 
ticular problem, we have performed Monte Carlo sim- 
ulations of relative quantum yields of donor fluorescence 
under the assumption that the donor chromophore which 
is closest to the origin is excited by an external light 
pulse. The results obtained are depicted in Fig. 2. One 
can see that, in comparison with the results presented in 
Fig. 1, the donor fluorescence quantum yield is much 
lower than in the case of random excitation. However, 
as in the case of random excitation, the donor fluores- 
cence quantum yield does not depend upon the concen- 
tration of donor chromophores. Figure 2 has important 
theoretical implications. It gives insight into the neces- 
sity of an individual averaging over every donor and 
accepter configuration. 

Fluorescence Depolarization 

While relative quantum yields of donor fluores- 
cence are almost uninfluenced by the concentration of 
donor chromophores, the changes of donor fluorescence 
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Fig. 2. The relative quantum yield "q/'qo of donor fluorescence as a 
function of the number of donor chromophores and a constant number 
(100) of accepter chromophores for three ratios of FOrster radii. The 
values of the relative quantum yield were obtained under the assump- 
tion that the donor chromophore closest to the origin is excited by an 
external light pulse. 

3 A direct comparison of Monte Carlo simulations for chromophores 
embedded in a Gaussian chain and uniform space is difficult. This 
difficulty arises from the fact that simulated chromophores are dis- 
tributed in a Gaussian volume, contrary to a uniform distribution, 
where chromophores are distributed in whole space. 

depolarization are more visible, as shown in Figs. 3 and 
4. Similarly to observations made from changes of donor 
fluorescence quantum yields, donor fluorescence depo- 
larization is dependent upon the concentration of chro- 
mophores as well as the F6rster radii ratio. One should 
also note that fluorescence depolarization is sensitive to 
the selection of a chromophore which was originally ex- 
cited. In Fig. 3 all donor chromophores were originally 
excited with the same probability, and in Fig. 4 the do- 

1.00 

0.95 

0,90 

0.85 

0.80 

0.75 

�9 0 

Z 

RoDA/RoDD 
�9 1.00 
= 1.79 [ 
�9 3 .15  

I 

20 40 60 80 100 
Number of  donor molecules 

Fig. 3. The donor fluorescence depolization r/ro as a function of the 
number of donor chromophores and a constant number (100) of ac- 
cepter chromophores for three ratios of Frrster radii. The values of 
donor fluorescence depolarization were obtained under the assumption 
that every donor chromophore can be excited by an external light pulse. 
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Fig. 4. The donor fluorescence depolarization r/rio as a function of 
the number of donor chromophores and a constant number (100) of 
accepter chromophores for three ratios of Frrster radii. The values of 
donor fluorescence depolarization were obtained under the assumption 
that the donor chromophore closest to the origin is excited by an 
external light pulse. 
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nor chromophore which is closest to the origin was orig- 
inally excited. 

The decrease in fluorescence depolarization as a 
function of the concentration of donor and acceptor 
chromophores depicted in Figs. 3 and 4 is rather slow, 
and much slower than the similar changes observed in a 
three-dimensional random and uniform distribution of 
chromophores. A much more profound change of fluo- 
rescence depolarization was observed for the one-com- 
ponent system (only donor chromophores), as shown in 
Fig. 5. However, as in the case of the two-component 
system (donor and acceptor chromophores), the decrease 
in fluorescence depolarization is much slower than for 
the one-component donor system with a uniform distri- 
bution of chromophores. 

In the Introduction, we mentioned that a polymer 
chain can be modeled as a random walk, self-avoiding 
walk, or random walk in disordered lattice [16]. How- 
ever, regardless of the situation, the probability density 
for finding the end-to-end distance of the walk in a pol- 
ymer consisting of N monomer units is given by the 
Gaussian-like equation. In the case of aromatic poly- 
mers, the role of the acceptor is assumed by the excimer, 
which acts as a trap for the migrating excitation energy 
along chromophores [20]. For the sake of simplicity, we 
assume in the following considerations that the excimer 
is not dissociating, as, for example, in the case of poly- 
styrene at room temperature [20]. Because the excimer 
does not exist in the ground state, we assume that the 
F6rster critical radii for the transferring of excitation en- 
ergy from a monomer to a monomer forming excimer 

site is the same as for energy migration between mono- 
mers, RODA/RoD D ---- 1. In Fig. 6 we have shown changes 
of the relative quantum yield and of fluorescence de- 
polarization for a constant number of monomers and a 
different number of excimers (traps). Obviously, there 
is no F6rster radii dependence, and the general changes 
of the relative quantum yield and fluorescence depolar- 
ization are in accordance with the above-discussed re- 
sults. At this point we are concerned mostly with energy 
migration and trapping in aromatic polymers. It was 
shown, on the basis of quantum mechanical considera- 
tions [21], that in the case of polystyrene, excimers are 
formed in meso-tt dyads of which the concentration at 
| conditions is very low, about 4%. If we assume that 
the polystyrene chain contains 100 mers, then the con- 
centration of excimers is approximately 4. The concen- 
tration of excimers can be increased by casting the 
polystyrene film where one can observe a significant 
increase in excimer fluorescence [22]. There is no uni- 
fied agreement, however, and most of the authors sug- 
gest that the increase in excimer fluorescence observed 
in the polystyrene film is due to an additional intermo- 
lecular excimer formation. Although the concentration 
of intermolecular sites is not precisely known, it cannot 
be too high because a low intensity of monomer fluo- 
rescence is observed even in the film. Returning to the 
results depicted in Fig. 6, one can note that for the sim- 
ulated Gaussian distribution of molecules, the changes 
of the relative quantum yield of monomer fluorescence 
are not comparable to those observed experimentally. 
One should also note that an increase in excimer con- 
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Fig. 5. The donor fluorescence depolarization r/ro as a function of the 
number of donor chromophores for a one-component system. The val- 
ues of donor fluorescence depolarization were obtained under the as- 
sumption that every donor chromophore can be excited by an external 
light pulse. 
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Fig. 6. The relative donor fluorescence quantum field ('�9 and donor 
fluorescence depolarization (cJ) as a function of the number of acceptor 
chromophores for a constant number of donor chromophores, 100. 
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centration leads to an increase in donor fluorescence an- 
isotropy, as shown in Fig. 6. 

Fluorescence Decays 

We have discussed above the steady-state photo- 
physical observables, such as the fluorescence quantum 
yield and fluorescence depolarization. However, one can 
use transient measurements to investigate these interest- 
ing systems. Under Quantum Yields, we have shown 
that transient and steady-state observables are interre- 
lated. In the case of transient studies two observables 
can be investigated: the decay profile of the originally 
excited donor chromophores [GS(t)] and the decay of the 
donor chromophores [GD(t)]. GS(t) gives us insight into 
energy migration, while GD(t) is related to the total trans- 
port properties of the system. Figure 7 depicts the decay 
of the originally excited donor chromophores for a con- 
stant concentration of donor ehromophores and a varia- 
ble concentration of acceptor chromophores. Similarly 
to the case of steady-state observables, one can notice 
two features. First, the decay of GS(t) is very slow, and 
second, the influence of the acceptor concentration is 
rather small in comparison to the respective system with 
a uniform and random distribution of chromophores. A 
similar behavior is observed for G~ decay as shown 
in Fig. 8. 
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Fig. 7. The decay profile of originally excited donor chromophores 
[GS(t)] for a constant number of donor chromophores (100) and three 
numbers of acceptor chromophores: 0, 10, and 20, respectively. 
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Fig. 8. The decay profiles of donor fluorescence [GD(t)] for a constant 
number of donor chromophores (100) and two numbers of acceptor 
chromophores: 10 and 20, respectively. 

SUMMARY AND CONCLUSIONS 

In this paper we have investigated energy transfer 
and migration between chromophores of polymer-like 
molecules embedded in a Gaussian space. It was shown 
that all photophysical steady-state and transient observ- 
ables are very strongly influenced by the distribution 
function in comparison to the uniform and random dis- 
tribution. However, contrary to the uniform and random 
distribution, photophysical observables are very weakly 
dependent on donor and acceptor concentrations. It was 
also shown that all observables are strongly dependent 
upon the F6rster radii ratio. A similar dependence is 
observed for uniform and random distributions. How- 
ever, embedding chromophores in a Gaussian space leads 
to a more significant influence of the FOrster radii ratio 
on photophysical observables. 
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